inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christoph L. Teske* and Wolfgang Bensch

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Correspondence e-mail: cteske@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (Se–Se) = 0.003 Å R factor = 0.055 wR factor = 0.161 Data-to-parameter ratio = 29.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

$Tl_4Nb_2Se_{11}\\$

The ternary compound tetrathallium diniobium undecaselenide, $Tl_4Nb_2Se_{11}$, was prepared by a molten flux method from a melt of Tl_2Se , elemental Se and Nb. The structure is composed of discrete Tl^+ cations and complex $[Nb_2Se_{11}]^{4-}$ anions. In the anion, the two crystallographically independent Nb atoms are sevenfold coordinated by Se atoms to form a distorted pentagonal bipyramid. Two NbSe₇ polyhedra have a face in common, thus yielding the $[Nb_2Se_{11}]^{4-}$ unit. The crystal structure of $Tl_4Nb_2Se_{11}$ is isotypic with the structure of the homologous tantalum compound $Tl_4Ta_2Se_{11}$ [Teske *et al.* (2002). *Z. Anorg. Allg. Chem.* **628**, 2651–2655], which was the first polyselenide with discrete complex $[M_2Se_{11}]^{4-}$ anions.

Comment

Until very recently compounds with discrete $[M_2Q_{11}]^{4-}$ anions (M = Nb and Ta, and Q = chalcogen) were reported only for sulfides, such as $\text{Cs}_4\text{Nb}_2\text{S}_{11}$ (Klepp & Gabl, 1998), $\text{K}_4\text{Nb}_2\text{S}_{11}$ (Bensch & Dürichen, 1996) and $\text{K}_4\text{Ta}_2\text{S}_{11}$ (Schreiner *et al.*, 1989; Herzog *et al.*, 1999), and for mixed chalcogenides, such as $\text{K}_4\text{Nb}_2\text{S}_{8.9}\text{Se}_{2.1}$, $\text{K}_4\text{Nb}_2\text{S}_{9.5}\text{Se}_{1.5}$ (Krause *et al.*, 2000) and $\text{K}_4\text{Nb}_2\text{S}_{10}\text{O}$ (Krause *et al.*, 1999). Common features of polyselenides with compositions such as $\text{Rb}_6\text{Nb}_4\text{Se}_{22}$ or $\text{K}_{12}\text{Nb}_6\text{Se}_{35}$ (Dürichen, 1998) are infinite $\frac{1}{\infty}[\text{Nb}_x\text{Se}_y]^{2-}$ anionic chains containing $\text{Nb}_2\text{Se}_{11}$ building blocks that are interconnected by Se_2^{2-} or Se_3^{2-} anions. Interestingly, a pure polyselenide comprising only the isolated binuclear anion $[M_2\text{Se}_{11}]^{4-}$ was reported only for M = Ta (Teske *et al.*, 2002). We report here the crystal structure of the homologous Nb compound that is isotypic with the aforementioned $\text{Tl}_4\text{Ta}_2\text{Se}_{11}$.

The $[Nb_2Se_{11}]^{4-}$ unit, which is composed of two distorted NbSe7 pentagonal bipyramids sharing a common face, is displayed in Fig. 1. The coordination polyhedron of every Nb⁵⁺ ion consists of one terminal selenide Se²⁻, one η^2 -Se₂²⁻ unit, a μ_2 -Se²⁻ anion bridging the two metal centres and one additional Se₂²⁻ anion, which is η^2 to one Nb⁵⁺ ion while one Se of this unit serves as a bridging atom to the second metal centre. Therefore, the complex molecular anion may be formulated as $[Nb_2(\mu-Se)(\mu-\eta^2,\eta^1-Se_2)_2(\eta^2-Se_2)_2(Se)_2]^{4-}$. The interatomic Nb-Se distances range from 2.409 (2) to 2.860 (3) Å (Table 1) and can be divided into three groups. The two short Nb-Se distances of 2.409 (2) and 2.437 (3) Å to the terminal Se²⁻ anions may be described as Nb=Se double bonds. Ten medium-long distances range from 2.559 (3) to 2.669 (3) Å, and two longer distances are 2.836 (3) and 2.860 (3) Å. The average Nb-Se distance of 2.62 Å is comparable to the sum of the ionic radii $\Sigma = 2.62$ Å [with $r(\text{Nb}^{5+}) = 0.64$ for sixfold coordination or $\Sigma = 2.67$ Å with $r(Nb^{5+}) = 0.69$ for sevenfold coordination and $r(Se^{2-}) = 1.98$ Å (Shannon, 1976)]. Since Ta⁵⁺ and Nb⁵⁺ have the same ionic

Received 10 November 2005 Accepted 29 November 2005 Online 11 January 2006

Figure 1

radius, these are very similar to the corresponding distances in the structure of the homologuous Ta compound. Likewise, the distortion of the bipyramidal MO_7 units is very similar to those of Tl₄Ta₂Se₁₁. In the title compound, the Nb···Nb distance of 3.560 (3) Å is too long for metal-to-metal interaction. The mean Se–Se bond length in the Se $_2^{2-}$ anions of about 2.36 Å (see Table 1) is typical for Se-Se single bonds. The displacements of the Nb⁵⁺ ions from the mean planes defined by the equatorial atoms Se4/Se6/Se5/Se2/Se3 and Se4/Se8/Se9/Se7/ Se10 are 0.3596 (16) Å for Nb2 and 0.4223 (16) Å for Nb1, respectively, with an angle between the two pentagonal planes of 49.23 (7)°. The corresponding values for $Tl_4Ta_2Se_{11}$ are 0.36 Å for Ta2 and 0.41 Å for Ta1 and 57.5°, respectively. [Note that these values were wrongly reported in the original paper (Teske et al., 2002) and are now recalculated correctly.] The coordination numbers (CN) for the Tl^+ ions are CN(Tl2) = 7, CN(Tl4) = 8, CN(Tl1) = 9 and CN(Tl3) = 9, with Tl-Sedistances ranging from 3.024 (3) to 3.849 (3) Å (Table 1.) The average Tl-Se value of about 3.40 Å is nearly 5% shorter than the sum of the ionic radii (Shannon, 1976) for CN = 8. The arrangement of the anions is shown in Fig. 2. Within the ac plane the anions are packed in a hexagonal fashion to form pseudo-layers. These layers are stacked perpendicular to [001].

Experimental

For the synthesis of $Tl_4Nb_2Se_{11}$, mixtures of Tl_2Se , Nb and Se in the molar ratio 2:2:9 were sealed in a Duran glass ampoule under an argon atmosphere. The starting materials were Nb powder (99.7%, Riedel-De Haën AG), Se (99.5%, Riedel-De Haën AG) and Tl (99.99%, Sigma–Aldrich). Tl_2Se was prepared by direct reaction of Tl and Se. The ampoule was transferred to a preheated furnace at 493 K, heated to 753 K with a heating rate of 3 K min⁻¹, held at that temperature for 12 h and heated to 833 K within 1 h, which produced a black melt. The ampoule was removed from the furnace and shaken (until solidification after some seconds) to homogenize the black liquid. This was repeated once a day during a heating period of one week. Finally, the ampoule was cooled to 623 K (3 K min⁻¹) and

opened at room temperature. The black crystals obtained are stable in air for a long time.

Z = 2

 $D_r = 6.555 \text{ Mg m}^{-3}$

Cell parameters from 70

 $0.24 \times 0.16 \times 0.12 \text{ mm}$

3582 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

T = 295 (2) K

Column black

 $R_{\rm int} = 0.092$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = 0 \rightarrow 10$

 $k = -12 \rightarrow 12$

 $l = -17 \rightarrow 17$

3 standard reflections

frequency: 120 min

intensity decay: none

 $w = 1/[\sigma^2(F_0^2) + (0.1091P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Extinction correction: *SHELXL97* Extinction coefficient: 0.0021 (2)

+ 9.5978*P*]

 $\Delta \rho_{\rm max} = 5.28 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -4.33 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.011$

 $\begin{array}{l} \theta = 10 - 25^{\circ} \\ \mu = 56.11 \ \mathrm{mm}^{-1} \end{array}$

Crystal data

Tl₄Nb₂Se₁₁ $M_r = 1871.86$ Triclinic, $P\overline{1}$ a = 7.974 (4) Å b = 9.147 (5) Å c = 13.626 (7) Å $\alpha = 73.11$ (4)° $\beta = 89.26$ (4)° $\gamma = 85.76$ (6)° V = 948.4 (9) Å³ Data collection

Philips PW1100 four-circle diffractometer ω/θ scans Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1998)] and X-RED (Stoe & Cie, 1998)] $T_{\rm min} = 0.005, T_{\rm max} = 0.035$ 4895 measured reflections 4572 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.161$ S = 1.074572 reflections 155 parameters

Table 1Selected bond lengths (Å).

Tl1-Se1 ⁱ	3.071 (3)	Tl4-Se11 ⁱ	3.099 (2)
Tl1-Se4 ⁱ	3.099 (3)	Tl4-Se9 ⁱ	3.261 (3)
Tl1-Se8 ⁱⁱ	3.422 (3)	Tl4-Se7	3.310 (3)
Tl1-Se1 ⁱⁱⁱ	3.426 (3)	Tl4-Se7 ^{vii}	3.389 (3)
Tl1-Se9 ^{iv}	3.453 (3)	Tl4-Se5	3.402 (3)
Tl1-Se3 ⁱ	3.459 (3)	Tl4-Se8	3.536 (3)
Tl1-Se2	3.505 (3)	Tl4-Se6 ^{vii}	3.849 (3)
Tl1-Se3 ^{iv}	3.526 (3)	Nb1-Se1	2.409 (2)
Tl1-Se8	3.811 (3)	Nb1-Se2 ^{vii}	2.568 (3)
Tl2-Se4 ⁱ	3.044 (2)	Nb1-Se6 ^x	2.594 (3)
Tl2-Se11	3.160 (3)	Nb1-Se5 ^{viii}	2.606 (3)
Tl2-Se10 ^v	3.203 (3)	Nb1-Se4	2.625 (2)
Tl2-Se5 ^v	3.263 (3)	Nb1-Se3	2.636 (3)
Tl2-Se11 ^{vi}	3.274 (3)	Nb1-Se10	2.860 (3)
Tl2-Se10 ^{vii}	3.340 (3)	Nb2-Se11 ⁱ	2.437 (3)
Tl2—Se6	3.825 (3)	Nb2-Se7	2.559 (3)
Tl3—Se5	3.144 (2)	Nb2-Se7	2.559 (3)
Tl3-Se5	3.144 (2)	Nb2-Se8 ⁱ	2.584 (3)
Tl3–Se1 ^{viii}	3.193 (3)	Nb2-Se9	2.591 (3)
Tl3–Se1 ^{iv}	3.297 (3)	Nb2-Se4	2.656 (2)
Tl3-Se2 ^{ix}	3.313 (3)	Nb2-Se10	2.669 (3)
Tl3—Se8	3.463 (3)	Nb2-Se3	2.836 (3)
Tl3–Se7 ^{vii}	3.523 (3)	Se2–Se3 ^{vii}	2.355 (3)
Tl3-Se3 ^{vii}	3.526 (3)	Se5-Se6 ^{vii}	2.365 (3)
Tl3-Se6 ^{vii}	3.673 (3)	Se7-Se10	2.361 (3)
Tl3-Se2	3.711 (3)	Se8–Se9 ¹	2.373 (3)
Tl4-Se11	3.024 (3)		

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) x, y + 1, z + 1; (iv) x, y, z + 1; (v) x, y + 1, z; (vi) -x, -y + 2, -z + 1; (vii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y, -z + 1; (ix) -x + 1, -y + 1, -z + 2; (x) x, y - 1, z.

The atomic coordinates of the isotypic Ta compound (Teske *et al.*, 2002) were used as a starting model. The highest peak is sited 0.88 Å from Tl2 and the deepest hole 0.87 Å from Tl4.

inorganic papers

Data collection: *DIF4* (Stoe & Cie, 1992); cell refinement: *DIF4*; data reduction: *REDU4* (Stoe & Cie, 1992); program(s) used to solve structure: coordinates taken from the isotypic Ta compound; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Crystal Impact, 1999); software used to prepare material for publication: *SHELXL97*.

References

- Bensch, W. & Dürichen, P. (1996). Eur. J. Solid State Inorg. Chem. 33, 527–536. Crystal Impact (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Dürichen, P. (1998). PhD thesis, University of Kiel, Germany.
- Herzog, S., Näther, C. & Bensch, W. (1999). Z. Anorg. Allg. Chem. 625, 969–974.
- Klepp, K. O. & Gabl, G. (1998). Z. Naturforsch. Teil B, 53, 1236-1238.
- Krause, O., Näther, C., Dürichen, P. & Bensch, W. (1999). Eur. J. Inorg. Chem. 1295–1299.
- Krause, O., Näther, C., Dürichen, P. & Bensch, W. (2000). Solid State Sci. 2, 197–203.
- Schreiner, S., Aleandri, L. E., Kang, D. & Ibers, J. A. (1989). *Inorg. Chem.* 28, 392–393.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Figure 2

Arrangement of the $[Nb_2Se_{11}]^{4-}$ anions in the structure of $Tl_4Nb_2Se_{11}$. Projections along [110] (left) and along [001] (right). Colour code: Se red open spheres, Nb green filled spheres, Tl blue cross-hatched spheres. For clarity, Tl atoms have been omitted on the left.

- Stoe & Cie (1992). *DIF4* (Version 7.09X/DOS) and *REDU4* (Version 7.03). Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1998). *X-SHAPE* (Version 1.03) and *X-RED* (Version 1.11). Stoe & Cie, Darmstadt, Germany.
- Teske, C. L., Lehnert, N. & Bensch, W. (2002). Z. Anorg. Allg. Chem. 628, 2651–2655.